sector de la seguridad privada, empresas de seguridad, empresas de servicios, revista Seguritecnia, ciberseguridad
Revista Seguritecnia Edición impresa
Valoración
  • Actualmente 0 de 5 Estrellas.
Tu valoración
  • Actualmente 0 de 5 Estrellas.
  • 1
  • 2
  • 3
  • 4
  • 5
OPINIÓN

Roberto Montejano, KAM&BDM de Casmar Electrónica

Aplicaciones de inteligencia artificial en soluciones basadas en vídeo

La disponibilidad de enormes cantidades de datos ('Big Data'), sobre todo en imagen, vídeo y texto, proporciona la “materia prima” para entrenar modelos complejos de redes neuronales, más conocidos como modelos de aprendizaje profundo o 'Deep Learning'.

Los grandes avances tecnológicos en los últimos años nos han permitido disponer de grandes capacidades de computación a precios asequibles. El desarrollo de las diferentes opciones para implementar el aprendizaje automático a nivel hardware por los diferentes fabricantes, apostando por enfoques distintos sobre cómo construir la arquitectura más adecuada para cada aplicación de inteligencia artificial –como, por ejemplo, GPU, TPU, NPU o FPGA–, con sus consecuentes ventajas e inconvenientes, ha propiciado la disponibilidad de poderosas herramientas para desarrollar soluciones para entrenar modelos complejos de redes neuronales.

Afortunadamente, la aplicación de esta tecnología al procesado de vídeo ha repercutido directamente en la creación de potentes algoritmos basados en redes neuronales artificiales capaces de procesar ingentes cantidades de datos proporcionados por las imágenes, así como entrenar modelos con billones de parámetros. Podemos afirmar con rotundidad que la inteligencia artificial está aportando avances inimaginables hace tan solo pocos años en aplicaciones cotidianas para seguridad, más concretamente en aquellas donde el vídeo está presente.

Sistemas DAI para tráfico

El Deep Learning en sistemas DAI (Detección Automática de Incidentes), nos proporciona una solución fiable para la detección de incidentes y anomalías en el tráfico, no solo en las típicas aplicaciones en túneles, sino también en carreteras e intersecciones.

Los sistemas DAI que trabajan con Deep Learning están basados en un peculiar y realista método matemático de seguimiento de objetos en movimiento 3D (en tres dimensiones), reduciendo drásticamente las falsas alarmas y simplificando al máximo la calibración de los algoritmos de tráfico deseados. 

Con el uso de la inteligencia artificial y el aprendizaje profundo, las falsas alarmas se reducen aún más. De hecho, el software es capaz de identificar los tipos de objeto que se mueven por la escena, reduciendo los problemas típicos de un sistema DAI estándar como las oclusiones que dificultan el proceso de análisis.

Además, los problemas causados por baja iluminación y malas condiciones climatológicas, donde usualmente se usan cámaras térmicas para mantener los rangos de detección, pueden ser drásticamente reducidos, permitiendo incluso el uso de cámaras CCTV en rango visible en exteriores, todo ello sin pérdida en el rendimiento en la capacidad de análisis. Asimismo, tendremos mucha más flexibilidad en la ubicación de la cámara gracias a la capacidad del software de distinguir objetos, incluso si están muy cerca uno del otro.

Podemos asegurar rotundamente que, si las condiciones ambientales no son suficientes para ejecutar el análisis de tráfico adecuadamente sin el uso de otras tecnologías como la térmica, el software basado en Deep Learning es la opción perfecta para mantener altos rendimientos con el uso de cámaras estándar en rango visible.

Puede acceder al contenido completo en el siguiente enlace.

Volver